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1 Introduction

Aspect-Based Sentiment Analysis (ABSA) is a clas-
sification task that aims at identifying the aspects
of a given target entity as well as the sentiment
expressed toward each aspect. Moreover, in ABSA,
we classify a sentence into a set of pre-identified
categories with their polarities. Hence, we frame
its formulation as a multi-step problem with the
following phases: aspect terms extraction (A), as-
pect polarities identification (B), categories extrac-
tion (C), and category polarities identification (D),
where task A+B identifies aspect polarities from
the set of aspects extracted at step A, and similarly
for task C+D. The main contributions of our work
can be summarized as follows:

• Propose a multi-task transformer-based archi-
tecture to jointly learn all the subtasks.

• Draw a quantitative analysis of the results
achieved by the experiments.

• Describe how to improve the drawbacks of
proposed approaches with future work.

2 Related work

A large interest has been spent on ABSA in re-
cent years, both from industry (e.g. opinion min-
ing of consumer reviews) and academia (Wang
et al., 2020; Jiang et al., 2019; Xue and Li, 2018).
Neural networks, and more recently, transformer-
based architectures, keep breaking state-of-the-art
(SOTA) results in many Natural Language Process-
ing (NLP) tasks. Along these lines, in (Tang et al.,
2016) the authors propose a Target-Dependent
LSTM architecture to encode the relatedness of a
target word with its context words to infer the sen-
timent polarity towards the target term. In (Wang
et al., 2016) the authors investigate the role played
by attention in determining the part of a sentence
relevant to a specific aspect term.

3 Dataset description

The dataset consists of English sentences with
pre-identified entities that can be either laptops or
restaurants. Each input instance is annotated with a
collection of aspect terms of such entities and their
polarities. It is worth noting that multi-word as-
pect terms should be treated as single aspect terms.
Furthermore, only for the instances from the restau-
rant domain, we have a set of categories and their
polarities.

4 Preprocessing

We extract lemmas and Part-Of-Speech (POS) tags
using the NLTK library (Loper and Bird, 2002),
and pre-compute WordPiece masks to get word-
level representations 1. Additionally, we apply data
augmentation such that input sentences are dupli-
cated by a factor of n, being n the number of aspect
terms in the sentence, each time masking-out the
other n − 1 terms to avoid data inconsistencies.
Similar reasoning holds for aspect category terms.
After this step, the size of the training set increases
by more than 160%.

5 Contextualized Word Embeddings

In the past years, static word embeddings (Mikolov
et al., 2013; Pennington et al., 2014) well served in
many NLP tasks even though they were not suited
for polysemous words (Hu et al., 2016). Thanks to
the recent success of contextualized embeddings
(Peters et al., 2018; Devlin et al., 2019), we are able
to get context-specific representations of words de-
pending on their surrounding terms. In this context,
we employ BERT that conveniently uses Word-
Piece segmentation to avoid Out-Of-Vocabulary
words.

1We define our pooling strategy, similar to AllenNLP’s
implementation (Gardner et al., 2018).

https://docs.allennlp.org/main/api/modules/token_embedders/pretrained_transformer_mismatched_embedder/


6 Conditional Random Field

Linear chain Conditional Random Fields (CRFs)
(Lafferty et al., 2001) have proven their effective-
ness in several sequence tagging tasks (Huang et al.,
2015). As a structured learning model, the idea is
to chain predictions Y such that the value of Yi de-
pends on Yi−1 and to condition them on a sequence
of observations X .

7 Methodology

In this section, we formalize the tasks of aspect
terms identification 7.1 and category identification
7.2. Furthermore, we propose a unified approach
7.3 that enables the model to learn the two tasks
in parallel in a multitask learning (Caruana, 1996)
fashion.

7.1 Aspect terms identification

Given an input sentence of tokens x1x2 · · ·xn, our
objective goal is to determine the range of con-
tiguous tokens xi · · ·xi+k that belong to the same
aspect term. For instance, in the sentence The food
is tasty and portion sizes are appropriate. we rec-
ognize food and portion sizes as target aspect terms.
We frame the problem as a Named Entity Recog-
nition (NER) task, where aspect terms are anno-
tated according to the Inside–outside–beginning
(IOB/BIO) tagging scheme, and entity types (e.g.
LOC, ORG) are dropped. Consequently, we model
multi-word aspect terms using an initial begin sym-
bol, followed by a collection of inside symbols. To
extract aspect terms polarities, we can extend this
reasoning and pair each symbol of the BIO tag-
ging scheme to the desired polarity (Li et al., 2019).
The outside tag does not change since it does not
involve polarities. To extract the sentiment of a
candidate aspect term, we apply an aggregation
strategy over the predicted labels (e.g. first or most
common polarity aspect-wise).

7.2 Category identification

The naı̈ve approach is to infer the set of categories
of a sentence by looking at the probabilities of each
of them given the input sentence. The intuition is
that if the word food occurs in a sentence, there will
be a good chance of observing the homonymous
class for that sentence. More generally, we expect
a high probability for class x if the input tokens are
related to the domain of x, and a low probability
for class y if none of the input tokens are related

to y. To identify polarities we apply the same rea-
soning as in 7.1, considering as target vocabulary
the Cartesian product of the category class and the
polarity class.

7.3 Unified approach
Thanks to the big success of multitask learning
approaches (Conia et al., 2021; Raganato et al.,
2017; Collobert and Weston, 2008), we propose a
unified model that tries to solve both tasks in paral-
lel. According to the hypothesis for which aspect
terms can be informative for predicting aspect cat-
egories (Xue et al., 2017), we leverage both the
input sentence and the recognized aspect terms for
the extraction. We define a loss function for each
subtask and optimize for them jointly to improve
subtasks A+B and C+D.

8 Model architecture

In this section, we describe the architecture for
the multitask approach. Solving only for task B,
or D, can be achieved as a simplification of this
model, where pre-identified aspect terms, or aspect
categories, are fed as input, and we analyze their
relatedness with respect to the input sentence.

8.1 Input representation
As the core representation of the input sequences,
we stack the last four layers of BERT embeddings
to have a context-aware representation of the to-
kens. Following (Alghanmi et al., 2020), we apply
an average pooling layer and concatenate the re-
sulting word-level BERT embeddings with static
word embeddings (i.e. Word2Vec).

8.2 POS embeddings
To further enhance the quality of our input embed-
dings, we append a learnable k-dimensional POS
embedding. We expect it to boost the performance
since some parts of speech are less observed when
annotating words as aspect terms 1. The value of
k is experimentally found through hyperparameter
tuning.

8.3 Sentence encoder
Leveraging the sequential nature of the input sen-
tences, we employ a Bidirectional Long Short-
Term Memory (BiLSTM) to extract latent repre-
sentations of the input words. Their gated archi-
tecture enables to capture short-term dependencies
while also retraining part of long-term dependen-
cies. However, since hidden state hi depends on the



computation of hi−1 for both directions, it heavily
affects parallelism. To overcome this issue, we ex-
periment with self-attention layers (Vaswani et al.,
2017) and transformer encoders. Differently from
Recurrent Neural Networks (RNNs), they attend to
information from the whole input sequence rather
than compressing it into single hidden vector states,
with corresponding information loss (Bahdanau
et al., 2016).

8.4 Task-specific decoders
At the end of the encoding pipeline, we train two
linear decoders to map predictions to the corre-
sponding output space. Their linear nature confirms
the intuition that the subtasks should be informative
to each other. The multitask model should benefit
from it, learning a shared hidden representation.

9 Experimental setup

In this section, we define the settings and the tools
(Biewald, 2020) used to evaluate the experiments.

9.1 Datasets
For the purpose of this project, we do not use any
external training corpus. However, for some ex-
periments, we find it beneficial to train our model
on a subset of the available data. Experiments
that show this behavior are reported with Φd, with
d ∈ {laptop, restaurant}, referring to models
trained only on that subset of data.

9.2 Evaluation metrics
As an evaluation framework, we consider multiple
metrics in order to assess the quality of a particular
model. Namely, in Table 1 we depict the highest
F1-macro and F1-micro scores achieved by each
architecture. However, for the testing phase, we
pick the model with the highest F1-macro score.

9.3 Hyperparameters
In Table 3, we present a subset of the hyperparame-
ters used in our models. However, we do not intend
it to be an exhaustive list of all the hyperparameters
and configurations used. They can be reached here.

9.4 Training details
In order to alleviate the memory requirements of
the transformer-based experiments and speed up
training, we use axial positional encodings (Kitaev
et al., 2020; Ho et al., 2019) to reduce the number of
parameters of the network, as well as APEX mixed-
precision training and frozen word embeddings.

We include weighted loss functions according to
the distribution of polarity labels in the training set.

10 Experimental results

Table 1 depicts the ablation study derived from
different experiments of the multitask learner. It
is worth observing how the bidirectional LSTM
model achieves the best performance when exploit-
ing all the core features. In Figures 3 and 5, we can
observe the relative confusion matrices. It confirms
our intuition that recurrent neural models overcome
the difficulties faced by simpler multi-layer per-
ceptron architectures. Moreover, we can notice a
general performance degradation when adding a
self-attention layer on top of the recurrent layer.
The CRF-BiLSTM model achieves similar results
without significant performance gain. Please refer
to Figure 4 for the complete architecture. Further-
more, training on a subset of the available data has
proven beneficial only in the category identification
task, with improvements up to 3%. Additionally,
word-level tokens have proven useful, and remov-
ing them lead the scores down to 48.56% on task
A+B and 52.92% on task C+D.

10.1 Cross-domain evaluation

We additionally try the following experiment mask-
ing out labels for aspect categories: first train model
Φrestaurant on restaurant data and evaluate on lap-
top data, and vice versa for Φlaptop. The result-
ing macro F1 scores on task A+B are respectively
19.76% and 16.68%. We observe that both the mod-
els overfit the training data and lack generalization
capabilities. It is worth noting how, without mask-
ing, the former improves up to 21.76%. It gives us
a reason to believe that multitask learning is a good
choice even in such transfer learning settings.

11 Conclusion and future work

We developed different strategies to tackle the
ABSA pipeline and eventually discovered the va-
lidity of the multitask learning approach against
individual learners. We observed through exten-
sive experimentation that recurrent neural models
paired with contextual embeddings lead to good
performance. As a crucial drawback of the system,
we believe that frozen word embeddings heavily
limit the performance. Future work would include
external training corpora, train with learnable word
embeddings, and apply more sophisticated data
augmentation techniques (Liesting et al., 2021).

https://wandb.ai/leonardoemili/nlp_hw2?workspace=user-leonardoemili
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Figure 1: Distribution of POS tags over the tokens labeled as aspect terms.

Architecture Core features
Aspects Categories (Φrestaurant)

Fmacro
1 Fmicro

1 Fmacro
1 Fmicro

1

MLP
BERT 35.82 47.73 34.59 41.97
+ Word2Vec 36.95 50.09 33.76 42.51
+ POS 38.10 48.58 36.42 42.86

BiLSTM
BERT 49.54 59.91 50.69 62.34
+ Word2Vec 49.20 61.50 51.63 64.50
+ POS 50.04 65.02 55.00 66.47

BiLSTM
(attention)

BERT 47.79 58.47 49.05 60.18
+ Word2Vec 47.98 59.22 49.34 60.79
+ POS 49.46 60.18 53.88 64.05

CRF-
BiLSTM

BERT 47.57 57.17 48.95 59.48
+ Word2Vec 48.11 60.10 48.03 59.22
+ POS 49.85 62.93 51.13 62.88

Transformer
(encoder)

BERT 35.92 48.19 49.44 61.07
+ Word2Vec 36.79 50.10 49.93 61.86
+ POS 37.33 50.53 51.09 63.01

Table 1: Experiments of the multitask model.

Model
Aspects Categories (Φrestaurant)

Fmacro
1 Fmicro

1 Fmacro
1 Fmicro

1

Aspect classifier 41.25 60.16 - -
Category classifier - - 38.23 49.12
Multistep classifier 50.04 65.02 55.00 66.47

Table 2: Performance of the multistep classifier (multitask learning) vs task-specific classifiers.



Figure 2: Diagram showing the macro F1 score over the
epochs. Dashed lines denote the highest values for the
category terms identification task and the aspect terms
identification task, respectively yellow and green line.

Figure 3: Normalized confusion matrix for the aspects
identification task. It is worth observing that the model
performs much better on positive aspect terms since the
dataset is highly unbalanced towards the majority class
1.

Hyperparameter Value
Learning rate 0.05
Optimizer Adam
Loss function Cross entropy
POS embedding size 30
Hidden size 512
Dropout 0.65
Epochs 50
Word encoder bert-base-uncased

Table 3: List of hyperparameters.

Figure 4: Diagram showing the architecture of the multi-
step model for multitask learning. Differences from the
base Bi-LSTM architecture are highlighted in red: (1)
refers to the BiLSTM (attention) architecture with posi-
tional embeddings, (2) highlights the CRF layer used to
decode emission scores using the Viterbi algorithm.



Figure 5: Normalized confusion matrix for the category identification task. Even in this confusion matrix, it is
possible to see that the model overfits the majority polarity class. However, it is the case that for some minority
classes we have good performance (e.g. price conflict, service neutral).


