
Stock Price Forecasting using GRU

June 20, 2021

Leonardo Emili Alessio Luciani

1. Introduction
Stock price prediction is an active field of study where the
objective goal is to predict the trend of the stock market,
typically based on its historical evidence. Despite the the-
ory of efficient markets claims that there cannot be any
pattern in the trend of financial assets due to the overall
knowledge of the mass, some affirm that periods of human
behavioral irrationality lead to strong operation correlation
reflected in the markets (Lo, 2017). Therefore, the task of
predicting stock prices based on past data seems not to be
completely inapproachable. Over the years, many meth-
ods have been proposed to tackle the task: ranging from
the Naive Forecast approach, which trivially forecasts the
stock value to be the last observed one, up to the most re-
cent ones that heavily rely on machine learning techniques.
In this context, we will delve into the topic of stock price
prediction using fundamental data to assess whether a stock
is attractive to investors. This technique, as opposed to
technical analysis, considers prices, as well as financial
reports, to model the problem. Here, the underlying as-
sumption is that one cannot tell whether it is worth buying
a stock only by looking at its current price and volumes. In-
deed, quarterly released financial reports about companies
and external information (e.g. the common sentiment on a
stock ticker) may be crucial to assess the quality of a given
stock. In this project, we experimented with the effective-
ness of deep learning techniques applied to the stock price
prediction task. The key idea is the use of recurrent neu-
ral networks that are able to exploit temporal dependencies
of events, hence conditioning the presence of an event on
previous events.

2. Related work
Some approaches have been explored in this direction, such
as in (Zou & Qu, 2020) where the authors apply LSTM,
Stacked-LSTM, and Attention-Based LSTM into the pre-

Email: Leonardo Emili
<emili.1802989@studenti.uniroma1.it>, Alessio Luciani
<luciani.1797637@studenti.uniroma1.it>.

Deep Learning and Applied AI 2021, Sapienza University of
Rome, 2nd semester a.y. 2020/2021.

diction of stock prices. The authors also propose an evalu-
ating framework to assess the quality of their models based
on the return of the trading strategy. In another work
(Mehtab et al., 2020), the authors predict the open value
of NIFTY 50 using different machine learning and deep
learning models. They also demonstrate that using one-
week prior data as input leads to good results.

3. Dataset
Data wrangling operations have been crucial for this task.
In fact, we start considering the S&P 500 stock data,
which is a collection of daily stock prices for all compa-
nies from the S&P 500 index. This dataset provides us
with the following features: open price, high price, low
price, close price, volume, stock ticker, and date. We
also consider an auxiliary dataset that provides us with
fundamental data from Yahoo Finance. The dataset con-
tains the following columns: Forward P/E, DE Ratio, Earn-
ings Growth, Enterprise Value/EBITDA, EBITDA, Current
Ratio, Cash Flow, Trailing P/E, Beta, PEG Ratio, Gross
Profit, Total Debt, Price, Return on Equity, Return on As-
sets, Price/Book, Revenue Growth, Operating Margin, En-
terprise Value/Revenue, Revenue, Total Cash, Enterprise
Value, Total Cash Per Share, Profit Margin, Price/Sales,
Book Value Per Share, Diluted EPS, Market Cap, Rev-
enue Per Share, Net Income Avl to Common, Ticker, Date.
Based on the date column, we can align the two datasets
such that for each event in the S&P 500 dataset, we have the
latest available financial report. From now on, we will refer
to the dataset obtained from the alignment process simply
as the dataset.

3.1. Feature engineering

We fill forward values whenever possible, we otherwise
replace missing values with constant values (i.e. zero
paddings). The intuition here is that if there are missing
values at the beginning of the history of a stock, it means
that the feature is not available, otherwise referring to the
latest value as the most up-to-date one. As an example,
consider holidays when markets are closed, and the price
does not change since no orders are placed. We also fill the
dataset with missing working days using the same forward-



Stock Price Forecasting using GRU

fill strategy. Furthermore, we perform significant feature
engineering steps adding technical indicators such as SMA
and RSI. The SMA is computed by averaging the prices of
a given number of multiple contiguous time steps. The RSI
was, instead, computed using the relative strength formula
(rsi).

U = max(0, closeNow − closePrevious)

D = max(0, closePrevious− closeNow)

RS = SMMA(U, n)/SMMA(D,n)

RSI = 100− 100/(1 +RS)

It takes into account the differences in contiguous prices,
with respect to the exponentially smoothed moving aver-
age. Therefore, it makes it easy to spot overbought and
oversold events. In fact, using this technical indicator, we
could extract the overbought and oversold binary features
too. According to the RSI definition, a value that goes
higher than 70 can be interpreted as a situation of over-
bought. Similarly, a value that goes below 30 is seen as a
situation of oversold. When dealing with articulated mod-
els, there is not need to add such binary features since they
can be easily extracted from the underlying data, the price
in our case. Another step of the feature engineering process
involved scaling the features to put them on similar scales.
This step was very important considering that we are using
stochastic gradient descent (SGD) to optimize the models
and having features with completely different scales would
have made the convergence task much harder. Therefore,
we applied scaling to numerical columns such as: prices,
volumes, technical indicator values, fundamentals, etc. At
this point, we get all features to have zero mean and unit
variance. Before training the model, we split the dataset
into three subsets: train set, dev set and test set. These are
respectively meant for training the model, tuning its hy-
perparameters and testing its performance. Since the core
idea of the project is forecasting future events by looking
at past data, we cannot leak future information in the train
set. Therefore, we split the dataset by years. Having tem-
poral data ranging from late 2003 to 2013, we dedicate the
years from 2003 to 2011 to the train set, 2012 to the dev set,
and 2013 to the test set. This way, the procedure is simi-
lar to backtesting the model strategy on present events. In
order to predict the target adjusted close price, we consider
the dataset according to the sliding window approach, also
known as the lag method. In this way, we decompose the
original dataset with overlapping windows and condition
the target value only on its lag. During the training phase,
we treat both the step size (i.e. the number of days before
the next window) and the window size (i.e. the size of the
lag) as hyperparameters and tune them accordingly.

4. Models
In this project, we apply the sliding window approach with
deep recurrent neural networks. As our first models, we
start with naive recurrent networks, respectively LSTM and
GRU models. As opposed to vanilla RNN, LSTM and GRU
networks partially solve the problem of vanishing gradient
by employing a gating mechanism to regulate the amount
of information to carry from previous time steps (Hu et al.,
2018). The input data has the following shape: (batch size,
window size, feature size). Our initial idea was to build
other components on top of the LSTM architecture in or-
der to leverage some intuitions and assumptions that we
had on the nature of our data. By comparing the perfor-
mance of naive GRU and LSTM architectures, we experi-
enced a quite noticeable improvement using the GRU over
the latter. Therefore, we decided to build our modified
architectures on top of the GRU. The GRU is a more re-
cent alternative to the LSTM. In particular, it condenses
the memory addition and deletion gates into a single one,
which is just an input gate for the memory vector. This
makes the GRU a simpler architecture that is much faster
to train and that delivers better results in many use cases,
especially with datasets of modest sizes. Furthermore, we
assume that there exists a local pattern that we can lever-
age to predict future prices. In fact, in a third model, we
make use of CNN layers to extract such information across
time steps. It consists of a convolutional layer followed by
a GRU layer, then connected to two dense layers. The con-
volutional layer is meant to extract high level patterns that
form across time steps inside a window. This information
is then also passed through the recurrent unit in order to get
enriched by means of temporal sequencial correlation. As a
fourth model, we employ the attention mechanism over our
input data and then feed it to a GRU layer. In particular, we
employ a multi-head self-attention mechanism to exploit
the idea to jointly attend to information from different rep-
resentation subspaces at different positions (Vaswani et al.,
2017). Similarly to the previous model, here the idea is to
process the raw input sequence by enriching it via a prelim-
inary layer, and then extracting its sequential information
via the GRU layer. However, in this case the attention layer
operates differently compared to the CNN one. In fact, it
works by putting the focus on specific parts of the input
sequence. For this task, it can be useful since it can under-
stand that specific subsequences of financial data are more
meaningful than others and give those more importance.

5. Hyperparameters
In this section, we present a subset of the hyperparameters
used. However, it is not intended to be an exhaustive list
of all the hyperparameter. The list of runs is logged using
wandb (Biewald, 2020) and can be reached at link.

https://wandb.ai/leonardoemili/spf?workspace=user-leonardoemili


Stock Price Forecasting using GRU

Table 1. List of hyperparameters.

Hyperparameter Value

Window size 20
Step size 1
Optimizer SGD
Batch size 1024

6. Experimental results
As an evaluation framework, we consider multiple metrics
in order to assess the quality of a particular model. Since
we are dealing with a regression task, it comes natural to
adopt the Mean Squared Error (MSE) measure as a proxy
to indicate how well a model performs. Then, we measure
the real performances of our system according to the return
of a trading strategy. The system is designed to buy a fixed
amount of stocks whenever the predicted price of the fol-
lowing day is higher than the current one. Then, it closes
the position after one day and registers the gain or the loss.
This way, the profit expectations can be compared among
all the models. Another metric that we took looked at was
the operation’s accuracy. That is an unconventional metric
that we decided to adopt to understand the fraction of times
that the model predicted the correct trend. In other words,
when the model predicted a price gain and the real out-
come was actually a gain. Regression metrics alone were
not enough to assess the goodness of the model in perform-
ing this task. In fact, a model could simply replicate the
price of the previous day by applying the identity function
and obtain decent MSE. This is because the relative change
in price between two subsequent days is very small on av-
erage. However, such a model would make very careless
predictions that would be of no help to a potential investor.
Table 2 shows the quantitative results obtained with the
models. We test the models on single stocks that were
picked in the index. It can be seen that, in some cases,
the models have considerably different results on different
stocks. This reflects the fact that the trend of some stocks is
more predictable than others. In fact, many different factors
affect the dynamics of companies. For example, we notice
higher return on AAPL that is a growth company, com-
pared to GE which is instead considered more of a value
stock. Growth stocks usually come with more volatility in
the price, and this could justify this difference in profitabil-
ity. Different models work better with different stocks. So,
we could pick the model that maximizes profit on a given
asset and use that to predict that particular asset. Consid-
ering the annual profit generated using our trading strategy,
we can see that the predictions made by our novel archi-
tectures (i.e. GRU with self-attention and convolutional)
outpeformed the standard recurrent approaches. In fact, ei-
ther the attention-based or the convolutional GRU reached
the very best results in those terms for a given stock.

Ticker Architecture
MSE
(∗10−4)

Operation
Accuracy
(%)

Year
Return
(%)

AAPL Naive GRU 5 68 176
AAPL Naive LSTM 773 70 107

AAPL
Attention
GRU 79 64 213

AAPL
Convolution
GRU 72 67 306

GE Naive GRU 112 57 92
GE Naive LSTM 158 55 113

GE
Attention
GRU 92 59 127

GE
Convolution
GRU 115 57 133

PFE Naive GRU 91 61 149
PFE Naive LSTM 172 60 143

PFE
Attention
GRU 14 75 175

PFE
Convolution
GRU 10 75 193

T Naive GRU 14 61 84
T Naive LSTM 32 59 50

T
Attention
GRU 12 54 67

T
Convolution
GRU 7 65 85

Table 2. Results comparison: MSE, operation accuracy, and year
return using trading strategy.

7. Conclusions
We have seen a stock price prediction deep learning ap-
proach that brought several recurrence-based architectures
to the table. At the beginning of this work we questioned
ourself about the feasibility of such predictions that go
against the efficient markets’ theory. We demonstrated that
a model is actually capable of extracting some patterns and
use them to make profitable decisions. Thus, markets may
have been not so efficient during the periods that are present
in our dataset, especially in the 2013 test set. We would ar-
gue that the predictions made by these models could vary
very much in profitability in different periods in time, af-
fected by different events and circumstances. Furthermore,
a potential widespread use of similar models by large insti-
tutions and individual investors could eventually annihilate
their effectiveness, since the information extracted by them
would be reflected in the prices. So, in order to keep the
same levels of profit, possible alternatives could be more
advanced architectures or more prior assumptions.



Stock Price Forecasting using GRU

References
RSI – Relative Strength Index. https://en.
wikipedia.org/wiki/Relative_strength_
index.

Biewald, L. Experiment tracking with weights and biases,
2020. URL https://www.wandb.com/. Software
available from wandb.com.

Hu, Y., Huber, A. E. G., Anumula, J., and Liu, S. Over-
coming the vanishing gradient problem in plain recur-
rent networks. CoRR, abs/1801.06105, 2018. URL
http://arxiv.org/abs/1801.06105.

Lo, A. W. Adaptive Markets: Financial Evolution at the
Speed of Thought. Princeton University Press, 2017.
ISBN 9780691135144. URL http://www.jstor.
org/stable/j.ctvc77k3n.

Mehtab, S., Sen, J., and Dutta, A. Stock price prediction us-
ing machine learning and lstm-based deep learning mod-
els, 2020.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. 2017. URL https://arxiv.
org/pdf/1706.03762.pdf.

Zou, Z. and Qu, Z. Using lstm in stock prediction and
quantitative trading, 2020.

https://en.wikipedia.org/wiki/Relative_strength_index
https://en.wikipedia.org/wiki/Relative_strength_index
https://en.wikipedia.org/wiki/Relative_strength_index
https://www.wandb.com/
http://arxiv.org/abs/1801.06105
http://www.jstor.org/stable/j.ctvc77k3n
http://www.jstor.org/stable/j.ctvc77k3n
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/1706.03762.pdf

