
Homework 1: Word-in-Context disambiguation

Leonardo Emili
Sapienza University of Rome, Italy

emili.1802989@studenti.uniroma1.it

Abstract
Word-in-context (WiC) disambiguation is a bi-
nary classification task that aims at recognizing
whether two target words share the same mean-
ing within two different contexts. Although it
may look trivial in its formulation, the task has
to deal with a good level of semantics since
many words are polysemous in nature: the
meaning of a word is heavily influenced by
”the company it keeps”, Firth (1957). In this
work, we present a Bi-LSTM based architec-
ture that leverages sequence encoding to pro-
vide a context-aware classification of the input
sentences.

1 Introduction

The homework involved the implementation of
a Multi-layer Perceptron (MLP) architecture that
makes use of individual word-level information to
output the final decision. From this point on, we
will refer to it as the baseline model. A more so-
phisticated approach required the use of Recurrent
Neural Networks (RNN) to encode context-level
information that we expected to boost the overall
performances. In the following, we will go through
an in-depth analysis of the adopted strategies and
the ideas that are rooted in the NLP best practices.

2 Preprocessing

For this task, we are provided with an input corpus
of the form sentence1, sentence2, target1, target2,
and label. In particular, for each sentence pair,
we have a gold annotation in the form of a binary
label that indicates whether the two target words
share the same meaning or not, as well as their
position in the original sentence. Moreover, we
are provided with additional information for the
target words, such as their lemma forms and the
respective Part-of-speech (POS) tag. As the first
step of the text processing pipeline, we apply tok-
enization to identify the words that compose our

sentences and extract their lemma form. Next, we
apply a function over the tokenized data responsi-
ble for transforming raw text into values that our
models can easily handle. Traditionally in NLP, we
distinguish two well-known concepts involved in
this process: the vectorizer function that applies the
previously mentioned transformation, and the vo-
cabulary which is represented by the set of unique
words in the training set.

2.1 Vocabulary

Starting from the training data, we extracted the set
of unique tokens (i.e. the word types) and assigned
to each of them a unique index for the encoding
step. It is common practice to define two addi-
tional tokens, namely the <UNK> and <PAD>
tokens, and add them to the vocabulary. It is im-
portant to note that while the former is one of the
available techniques to model Out-Of-Vocabulary
(OOV) words, the latter is particularly useful when
training with mini-batches of variable-length se-
quences. Furthermore, we built our vocabulary
filtering out those rare words that only appeared
once in the training corpus, also known as Hapax
Legomena.

3 Pretrained word embeddings

In this project, we relied on pre-trained 300-
dimensional word embeddings that have been
trained using Word2Vec (Mikolov et al., 2013) on
the Google News dataset. Furthermore, we also
experimented using GloVe embeddings (Penning-
ton et al., 2014) and draw a comparative analysis
of the two approaches. The choice of using pre-
trained embeddings was a fundamental one. In
fact, it let us save a considerable amount of training
time and also provided us with high-quality word
embeddings.

4 Models architecture

In this section, we present both the architectures we
implemented, with a particular focus on the recur-
rent nature of the second approach. Let’s start with
the simplest one: it is a Multi-Layer Perceptron
(MLP) and leverages word embeddings informa-
tion to classify an input sentence pair. Here we
employ a basic aggregation strategy that considers
the arithmetic mean over the sequences and passes
them through a collection of fully connected lay-
ers with ReLu and sigmoid as activation functions.
The second approach is somehow similar to the for-
mer but also includes an LSTM layer. Furthermore,
it makes use of dropout as a strong regularizer as
described in (Hinton et al., 2012). It is worth not-
ing that even though the very same aggregation
strategy is used after the LSTM layer, its simplicity
has been shown to be effective and provided us
with good results, as we will see in the next section.
Please refer to Figure 4 for a complete overview of
the final architecture.

4.1 Bidirectional LSTM

For the sake of this project, we implemented a Bidi-
rectional Long Short-Term Memory (BiLSTM) that
is an evolution of the simpler LSTM model. The
basic intuition behind recurrent neural networks
(RNN) is that we can leverage the sequential na-
ture of an input sequence and extrapolate some
context-aware representation from the input words.
More in detail, we provide input sentences to the
network in a time step fashion, where at each time
step some input xi of the original sentence x is
fed to the network. In this way, the latent rep-
resentation of feature xi, a word embedding in
our case, will also take into account the history
hi = (x1, x2, ..., xi−1). It confirms our intuition
that the meaning of a word is encoded by its neigh-
boring words, hence we expect to get a better under-
standing of the input sentence compared to simpler
models (e.g. MLP). Our choice of using an LSTM
architecture over vanilla RNNs comes from the fact
that they better handle the vanishing gradient prob-
lem. For the sake of this report, we will not delve
too much into detail. However, it is important to
note that their gated architecture enables them to
learn short-term dependencies while also retaining
part of long-term dependencies. Furthermore, us-
ing a BiLSTM, we get a better understanding of
the context of a word since we are observing its
neighboring tokens in both directions.

5 Results

In this section, we draw a quantitative evaluation
of the performances of the proposed models on ac-
tual test data. It is worth noting that we retained
a few samples from the train set to test the model
performances on unseen data and observed simi-
lar results. As mentioned in previous sections, we
expected the recurrent model to outperform the
simpler multi-layer perceptron. After careful fine-
tuning operations, the baseline model was able to
score 63.57% of F1. No further data preprocessing,
such as removing rare words from the vocabulary
or putting the dataset lowercase, helped in this case.
Whether instead, we analyze the recurrent model,
we observe a notable performance gain applying
such techniques. The best overall model configura-
tion, described in Table 3, let us reach a 69.14% of
F1 score. Here, we applied a threshold mechanism
to filter out words with frequency one in the train-
ing set, as explained in Section 2.1, which showed
to be effective in this case. In Figure 3, we can
better visualize its capabilities and observe that the
false negatives are fewer than false positives. From
Table 2, we can observe the results of different
experiments using pre-trained embeddings from
Word2Vec and GloVe. GloVe embeddings proved
to be less effective in this case, and we believe it is
partially due to the vocabulary size. In particular,
using the latter solution, we discovered that some
words were not available with GloVe embeddings,
potentially finding a higher number of OOV words
at test time. As an additional experiment (*), we
concatenated Word2Vec and GloVe embeddings
together. In this experiment (**), we also consid-
ered the case where one of the two embeddings was
missing and concatenated the available one to itself.
Both of them were able to outperform any of the
above MLP-based solutions but did not improve
the results further. We can observe from Figures 1
and 2 that the model did not suffer from overfitting.

6 Conclusions

In this project, we explored different solutions and
showed the effectiveness of recurrent neural net-
works when dealing with sequential data. As a
further exploration step, it would be interesting to
leverage more sophisticated approaches such as
contextualized embeddings as a way of incorporat-
ing semantics into the task. Moreover, adding more
features such as POS embeddings or char embed-
dings could improve the performance further.

References
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky,

Ilya Sutskever, and Ruslan R. Salakhutdinov. 2012.
Improving neural networks by preventing co-
adaptation of feature detectors.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word representa-
tions in vector space.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP, volume 14, pages 1532–
1543.

Figure 1: Training/validation loss of the best overall
model over the training epochs.

Figure 2: Training/validation accuracy of the best over-
all model over the training epochs.

Model F1 (%)

MLP 62.85
+ lemmatization 63.57
+ rare words removal 61.17
+ lowercase 61.28

BiLSTM 67.6
+ lemmatization 68.3
+ rare words removal 69.14
+ lowercase 67.73

Table 1: Performance comparison of the two archi-
tectures under different configuration scenarios using
pre-trained embeddings from Word2Vec.

Embedding F1 (%)

Word2Vec 69.14
300d GloVe 64.77
Word2Vec ⊕ 300d GloVe (*) 66.05
Word2Vec ⊕ 300d GloVe (**) 66.18

Table 2: Performance comparison of the best perform-
ing models using different types of word embeddings.

Hyperparameter Value

optimizer SGD
loss function BCE
learning rate 0.06
momentum 0.92
dropout 0.65

Table 3: List of hyperparameters of the best performing
BiLSTM model after the hyperparameter tuning phase.

Figure 3: Normalized confusion matrix for the best
performing LSTM model using Word2Vec embeddings.

http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781

Figure 4: Overview of the BiLSTM model architecture
that takes a sentence pair as input, encodes them through
an embedding layer and aggregates the BiLSTM encod-
ings over the sequence lengths. Ultimately, the two
representations are concatenated and fed to two fully
connected layers to predict the final decision.

